Category: Business Intelligence

AI活用の成功について医療が教えてくれる4つの教訓 0

AI活用の成功について医療が教えてくれる4つの教訓

[ad_1] この1年、ジェネレーティブAIにできること、できないこと、そしてすべきでないことに関する新しいツールや主張、アイデアには事欠かなかった。そして、誇大広告にもかかわらず、この技術を適用して成功した現実の企業プロジェクトはほんの一握りだ。ヘルスケア業界は例外で、幅広いジェネレーティブAIの使用事例がある。 大規模言語モデル(LLM)を臨床意思決定支援、患者の旅の軌跡、効率的な医療文書作成に使用することから、医師がクラス最高の医療チャットボットを構築できるようにすることまで、ヘルスケアは、生成AIを実稼働させ、すぐに価値を示すことで大きく前進している。では、AIの応用におけるヘルスケアのベストプラクティスと教訓から、他の実務家は何を得ることができるのだろうか? ここでは、ヘルスケアにおけるAIの応用から得られた4つの教訓を紹介する。 患者の旅の軌跡 従来のLLMの多くは、患者の診断名と年齢しか考慮していない。しかしそれを、人口統計、臨床的特徴、バイタルサイン、喫煙状況、過去の処置、投薬、臨床検査など、複数のマルチモーダルな記録に拡大したらどうだろう?これらの特徴を統一することで、患者をはるかに包括的に見ることができ、その結果、より包括的な治療計画が立てられる可能性が生まれる。 追加データは、疾患進行予測や異なる疾患におけるサブタイプ分類のような、様々な下流タスクのモデル性能を大幅に向上させることができる。追加機能と解釈可能性を考慮すれば、LLMはその後、医師が疾患の軌跡、診断、様々な疾患の危険因子について、より多くの情報に基づいた決定を下すのに役立つ。このアプローチが、マーケティング担当者のカスタマージャーニーや、保険会社や金融会社のリスク評価にどのように適用されるかは容易に想像がつく。 医療チャットボットの改善  構造化されたデータ(電子カルテ、処方箋)と非構造化データ(診療メモ、医療画像、PDF)を組み合わせて、患者の完全なビューを作成することは非常に重要だ。このデータは、患者に関する情報を収集したり、臨床試験、集団衛生、または研究努力の候補となる患者のコホートを特定するためのチャットボットなど、ユーザーフレンドリーなインターフェースを提供するために使用することができる。簡単なことのように聞こえるが、プライバシーやデータの制限を忘れてはならない。 チャットボットを最大限に活用し、規制要件を満たすために、ヘルスケアユーザーは、ノイズの多い臨床データを、質問に自動的に回答できる自然言語インターフェースに移行できるソリューションを見つけなければならない。しかも、完全なプライバシーを守りながら、大規模にだ。これは単にLLMやRAG LLMソリューションを適用するだけでは達成できないため、ヘルスケアに特化したデータ前処理パイプラインから始まる。法律や金融のようなコンプライアンスの高い他の業界は、コモディティ・ハードウェア上でデータを個人的に、大規模に準備し、他のモデルを使ってクエリを実行することで、ヘルスケアを見習うことができる。 ジェネレーティブAIの民主化 AIは、企業レベルのユースケースを支えるデータサイエンティストやIT専門家ほど有用ではない。最も一般的なヘルスケアのユースケースのために特別に設計されたノーコード・ソリューションが登場しつつある。最も注目すべきは、LLMを使ってタスク固有のモデルをブートストラップすることだ。基本的に、これはプロンプトのセットから始め、プロンプトエンジニアリングが提供できる以上の精度を向上させるためにフィードバックを提供することを可能にする。LLMはその後、その特定のタスクのために小規模で微調整されたモデルを訓練することができる。 このアプローチにより、AIが専門家の手に渡り、LLMが単独で提供できるものよりも精度の高いモデルが得られる。これは、データ共有が不要で、ゼロショットプロンプトとLLMを組織のファイアウォールの背後に展開できることから、コンプライアンスの高い企業にとって特に有用である。役割ベースのアクセス、データのバージョン管理、完全な監査証跡など、あらゆるセキュリティ管理を組み込むことができ、AI初心者のユーザーでも簡単に変更点を把握し、長期にわたってモデルを改善し続けることができる。 課題と倫理的配慮への対応 AIが生成するアウトプットの信頼性と説明可能性を確保することは、患者の安全性と医療システムに対する信頼を維持する上で極めて重要である。さらに、内在するバイアスに対処することは、すべての患者集団がAI主導のヘルスケアソリューションを公平に利用するために不可欠である。臨床医、データサイエンティスト、倫理学者、規制機関の間の協力的な努力は、医療とそれ以外におけるAIの責任ある展開のためのガイドラインを確立するために必要である。 このような理由から、CHAI(The Coalition for Well being AI)が設立された。CHAIは、ヘルスケアにおけるAIアプリケーションを責任を持って開発・展開するための具体的なガイドラインと基準を策定することを任務とする非営利団体である。CHAIは、米国政府やヘルスケア・コミュニティと協力しながら、ヘルスケアにおけるジェネレーティブAIアプリケーションを展開するための安全な環境を構築し、公正、公平、公平な製品やシステムを構築する際に考慮すべき具体的なリスクやベストプラクティスを網羅している。CHAIのようなグループは、AIの安全で効果的な利用を保証するために、あらゆる業界で複製することができる。 医療は、精密医療、個別化された治療、より良い転帰とQOLの向上につながる改善の新時代によって定義される、生成的AIの最先端にある。しかし、これは一夜にして起こったことではない。医療におけるジェネレーティブAIの統合は、その過程で技術的課題、倫理的考慮事項、規制の枠組みに取り組みながら、思慮深く行われてきた。患者や社会全体に利益をもたらすAI主導のイノベーションに対するヘルスケアの取り組みから、他の業界も多くを学ぶことができる。 上記の分野は、4月2日〜3日に開催される無料のバーチャル・コミュニティ・イベント、ヘルスケアNLPサミットで焦点となったものだ。...

Rocket Mortgageが生成AIの成功の基礎を築く 0

Rocket Mortgageが生成AIの成功の基礎を築く

[ad_1] 住宅ローン業界で成功するためには、効率性と正確性が最も重要だ。また、選択肢を広げておくことも重要だ。それが、Rocket Mortgageが機械学習やAI技術を積極的に導入してきた理由であり、ブライアン・ウッドリングCIOが「人間がループに入る」AI戦略を強調する理由である。 デトロイトに本社を置く消費者ローン運営企業は、10年以上にわたって機械学習とAIを導入しており、生成AI機能を市場にリリースしている数少ないパイオニアのひとつである。 ウッドリング氏は、「我々は現在、約1年前から複数の生成AIのケースを製品化しています」と述べ、例えば、同社が開発中の1つの生成AIチャットボットは、話すだけでなく、聞いて理解するように設計されていると指摘する。 Rocketが開発した別の生成AIアシスタントは、応募者の雇用主名を分析し、さまざまな名前で入力される可能性のある雇用主が同じものであると理解されるようにし、意思決定プロセスを大幅にスピードアップする。例えば、ほとんどの人はグーグルとアルファベットが同じ雇用主であることを知っている。このような人間の知識を使って生成AIアシスタントを訓練し、雇用主の身元を確認することは、親会社名のデータベースを構築して子会社やより一般的な会社の身元と照合するよりもはるかに効率的だとウッドリング氏は言う。 生成AIをいち早く実用化したRocket Mortgageは、投資家や規制当局に安全かつ責任ある方法で技術を導入していることを納得させるため、適切なガードレールとガイドラインを整備した上でそれを行った、とウッドリング氏は補足する。同社は現在、いくつかのビジネスプロセスを自家製のコードとAIで完全に自動化している。しかし、住宅ローンを組むかどうかといった決定を伴う生成AIのアプリケーションでは、常に「ループの中に人間がいる」とウッドリングは言う。 「生成AIを搭載したコパイロットやシステム(私たちが構築している多くのもの)では、インターネットに何年も投稿されたものをすべて知っている生成AIモデルと人間の判断が組み合わさることで、判断の精度が10%から15%向上することが分かっています。 生成AIのプロセスの意思決定と結果を承認するために人間の意見を取り入れることが、初期の生成AIの成功に不可欠な原動力であることが証明されつつある、というのがアナリストの意見だ。  IDCのワールドワイドAI・オートメーションマーケットリサーチ・アドバイザリーサービス担当グループバイスプレジデントであるリトゥ・ジョティ氏は、「生成AIは、さまざまなデータポイントを結びつけ、数秒で洞察をまとめ、合成する能力を持つバーチャルナレッジワーカーになりつつあり、より付加価値の高いタスクに集中できるようになっている」と語る。 「AIはローンの引き受けのようなプロセスを変革しつつあるが、真に効果的で実行可能なテクノロジーとなるためには、100%の精度が要求されるため、人間によるイン・ザ・ループが不可欠である。」 モデルにとらわれないAIを目指す 1,000人以上のエンジニアと600人以上のデータサイエンティストが協力し合い、Rocketのコードのほとんどを社内で構築している。 ウッドリングがプロダクト・エンジニアリング・チームを率いるCTOとして2017年に入社したとき、彼の最優先事項の1つは、Rocketのクラウド導入を加速させることだった。 「入社後、6ヶ月目に最初にやったことのひとつは、今後、新しいテクノロジーはすべてクラウドで構築すると宣言したことです」と彼は言う。 現在、Rocketのワークロードの60%から70%はクラウド上で稼働しており、そのうち95%以上はAWSで稼働している。残りはオンプレミスだ。 ウッドリングによると、同社初の機械学習モデルは10年以上前に開発され、マーケティング、リード生成パターン認識、ローン組成プロセスなどのタスクを自動化した。 しかし、ここ5、6年で、RocketにおけるAIの利用は「一気に加速した」とウッドリングは言う。例えば、ローン申込者の収入確認のおよそ3分の2は、現在100%機械学習モデルとAI技術によって行われていると彼は言う。 「私たちのビジネスのほぼすべての側面が、今やMLやAI、タスクの自動化、パターン認識、データ分析によって触れられています」とウッドリング氏は言い、意思決定が必要な場合は常に、人間がクロージング・プロセスの一部であることを繰り返し語った。 Rocketのエンジニアとデータサイエンティストは、AWS BedrockとAnthropic AIテクノロジーを使って生成AIモデルを開発している。主にAWSのショップであるにもかかわらず、Rocketは生成AIプラットフォームに対してモデルにとらわれないアプローチをとっている。PayPalとMicrosoftで経験を積んだ経験豊富な技術幹部であるRocket CompaniesのCEO、Varun...